The role of feedback in shaping neural representations in cat visual cortex.
نویسندگان
چکیده
In the primary visual cortex, neurons with similar response preferences are grouped into domains forming continuous maps of stimulus orientation and direction of movement. These properties are widely believed to result from the combination of ascending and lateral interactions in the visual system. We have tested this view by examining the influence of deactivating feedback signals descending from the visuoparietal cortex on the emergence of these response properties and representations in cat area 18. We thermally deactivated the dominant motion-processing region of the visuoparietal cortex and used optical and electrophysiological methods to assay neural activity evoked in area 18 by stimulation with moving gratings and fields of coherently moving randomly distributed dots. Feedback deactivation decreased signal strength in both orientation and direction maps and virtually abolished the global layout of direction maps, whereas the basic structure of the orientation maps was preserved. These findings could be accounted for by a selective silencing of highly direction-selective neurons and by the redirection of preferences of less selective neurons. Our data suggest that signals fed back from the visuoparietal cortex strongly contribute to the emergence of direction selectivity in early visual areas. Thus we propose that higher cortical areas have significant influence over fundamental neuronal properties as they emerge in lower areas.
منابع مشابه
Collective Oscillations in the Visual Cortex
The firing patterns of populations of cells in the cat visual cortex can exhibit oscillatory responses in the range of 35 85 Hz. Furthermore, groups of neurons many mm's apart can be highly synchronized as long as the cells have similar orientation tuning. We investigate two basic network architectures that incorporate either nearest-neighbor or global feedback interactions and conclude that no...
متن کاملShort-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملReceptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملRelation Between Retinotopical and Orientation Maps in Visual Cortex
A recent study of cat visual cortex reported abrupt changes in the positions of the receptive fields of adjacent neurons whose preferred orientations strongly differed (Das & Gilbert, 1997). Using a simple cortical model, we show that this covariation of discontinuities in maps of orientation preference and local distortions in maps of visual space reflects collective effects of the lateral cor...
متن کاملTime representations can be made from nontemporal information in the brain: an MEG study.
Perceiving the passage of time is an essential ability for humans and animals. Here we used magnetoencephalography and investigated how our internal clock system in the brain converts sensory experiences into their time representations. We focused on neural activities in the high-level visual areas of human subjects when they saw visual patterns and estimated the duration of their presentation....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 26 شماره
صفحات -
تاریخ انتشار 2002